Superlinearly convergent variable metric algorithms for general nonlinear programming problems
نویسندگان
چکیده
منابع مشابه
A Superlinearly Convergent Sequential Quadratically Constrained Quadratic Programming Algorithm for Degenerate Nonlinear Programming
We present an algorithm that achieves superlinear convergence for nonlinear programs satisfying the Mangasarian-Fromovitz constraint qualiication and the quadratic growth condition. This convergence result is obtained despite the potential lack of a locally convex augmented Lagrangian. The algorithm solves a succession of subproblems that have quadratic objective and quadratic constraints, both...
متن کاملSuperlinearly convergent PCG algorithms for some nonsymmetric elliptic systems
The conjugate gradient method is a widespread way of solving nonsymmetric linear algebraic systems, in particular for large systems arising from discretized elliptic problems. A celebrated property of the CGM is superlinear convergence, see the book [2] where a comprehensive summary is given on the convergence of the CGM. For discretized elliptic problems, the CGM is mostly used with suitable p...
متن کاملA superlinearly convergent algorithm for large scale multi-stage stochastic nonlinear programming
This paper presents an algorithm for solving a class of large scale nonlinear programming problem which is originally derived from the multi-stage stochastic convex nonlinear programming. Using the Lagrangian-dual method and the Moreau-Yosida regularization, the primal problem is neatly transformed into a smooth convex problem. By introducing a self-concordant barrier function, an approximate g...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملQuadratically and Superlinearly Convergent Algorithms for the Solution of Inequality Constrained Minimization Problems 1
In this paper some Newton and quasi-Newton algorithms for the solution of inequality constrained minimization problems are considered. All the algorithms described produce sequences fx k g converging q-superlinearly to the solution. Furthermore , under mild assumptions, a q-quadratic convergence rate in x is also attained. Other features of these algorithms are that the solution of linear syste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 1976
ISSN: 0025-5610,1436-4646
DOI: 10.1007/bf01580395